# Matrix-Product-State Algorithm for Finite Fractional Quantum Hall Systems

@article{Liu2014MatrixProductStateAF, title={Matrix-Product-State Algorithm for Finite Fractional Quantum Hall Systems}, author={Zhao Liu and Ravindra N. Bhatt}, journal={arXiv: Strongly Correlated Electrons}, year={2014} }

Exact diagonalization is a powerful tool to study fractional quantum Hall (FQH) systems. However, its capability is limited by the exponentially increasing computational cost. In order to overcome this difficulty, density-matrix-renormalization-group (DMRG) algorithms were developed for much larger system sizes. Very recently, it was realized that some model FQH states have exact matrix-product-state (MPS) representation. Motivated by this, here we report a MPS code, which is closely related to… Expand

#### References

SHOWING 1-10 OF 49 REFERENCES

Matrix product states for trial quantum Hall states

- Physics
- 2013

We obtain an exact matrix-product-state (MPS) representation of a large series of fractional quantum Hall (FQH) states in various geometries of genus 0. The states in question include all paired… Expand

Fractional quantum Hall states at 1 3 and 5 2 filling: Density-matrix renormalization group calculations

- Physics
- 2011

In this paper, the density-matrix renormalization group method is employed to investigate the fractional quantum Hall effect at filling fractions $\nu=1/3$ and 5/2. We first present benchmark results… Expand

Exact matrix product states for quantum Hall wave functions

- Physics
- 2012

We show that the model wave functions used to describe the fractional quantum Hall effect have exact representations as matrix product states (MPS). These MPS can be implemented numerically in the… Expand

Comparison of the density-matrix renormalization group method applied to fractional quantum Hall systems in different geometries

- Physics
- 2012

Abstract We report a systematic study of the fractional quantum Hall effect (FQHE) using the density-matrix renormalization group (DMRG) method on two different geometries: the sphere and the… Expand

The density-matrix renormalization group in the age of matrix product states

- Physics
- 2011

Abstract The density-matrix renormalization group method (DMRG) has established itself over the last decade as the leading method for the simulation of the statics and dynamics of one-dimensional… Expand

Model fractional quantum Hall states and Jack polynomials.

- Physics, Medicine
- Physical review letters
- 2008

The Jacks presented in this Letter describe new trial uniform states, but it is yet to be determined to which actual experimental fractional quantum Hall effect states they apply. Expand

Topological characterization of fractional quantum Hall ground states from microscopic Hamiltonians.

- Physics, Medicine
- Physical review letters
- 2013

The quantum dimensions, topological spins, quasiparticle charges, chiral central charge, and Hall viscosity of the phase can be obtained using data contained entirely in the entanglement spectrum of an infinite cylinder. Expand

Density matrix renormalization group study of incompressible fractional quantum Hall states.

- Physics, Medicine
- Physical review letters
- 2008

It is established, by carefully comparing with existing numerical results on smaller systems, that DMRG is a highly effective numerical tool for studying incompressible FQH states. Expand

Applying matrix product operators to model systems with long-range interactions

- Physics
- 2008

An algorithm is presented which computes a translationally invariant matrix product state approximation of the ground state of an infinite one-dimensional (1D) system. It does this by embedding sites… Expand

Braiding non-Abelian quasiholes in fractional quantum Hall states.

- Physics, Medicine
- Physical review letters
- 2014

This work provides the first microscopic verification for the Fibonacci nature of the Z_{3} Read-Rezayi quasiholes, and presents evidence for the failure of plasma screening in the nonunitary Gaffnian wave function. Expand